首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9652篇
  免费   2568篇
  国内免费   1011篇
化学   6790篇
晶体学   175篇
力学   72篇
综合类   62篇
数学   43篇
物理学   6089篇
  2024年   5篇
  2023年   85篇
  2022年   201篇
  2021年   259篇
  2020年   364篇
  2019年   281篇
  2018年   283篇
  2017年   279篇
  2016年   435篇
  2015年   476篇
  2014年   560篇
  2013年   991篇
  2012年   646篇
  2011年   682篇
  2010年   556篇
  2009年   625篇
  2008年   627篇
  2007年   754篇
  2006年   743篇
  2005年   565篇
  2004年   503篇
  2003年   480篇
  2002年   393篇
  2001年   363篇
  2000年   292篇
  1999年   236篇
  1998年   213篇
  1997年   208篇
  1996年   169篇
  1995年   165篇
  1994年   147篇
  1993年   122篇
  1992年   87篇
  1991年   62篇
  1990年   66篇
  1989年   42篇
  1988年   45篇
  1987年   38篇
  1986年   40篇
  1985年   26篇
  1984年   32篇
  1983年   6篇
  1982年   14篇
  1981年   19篇
  1980年   14篇
  1979年   4篇
  1978年   10篇
  1975年   5篇
  1973年   5篇
  1970年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
A new ion source has been designed and manufactured for the CYCLONE30 accelerator, which has a much advanced performance compared with the original. It is expected that the newly designed ion source extraction system will transport a very large percentage of the beam without deteriorating the beam optics, which is designed to deliver an H- beam at 30 keV. The accelerator assembly consists of three circular aperture electrodes made of copper. The simulation study was focused on finding parameter sets that raise the beam perveance as large as possible and which reduce the beam divergence as low as possible. Ion beams of the highest quality are extracted whenever the half-angular divergence is minimum, for which the perveance current intensity and the extraction gap have optimum values. The triode extraction system is designed and optimized by using CST software (for Particle Beam Simulations). The physical design of the extraction system is given in this paper. From the simulation results, it is concluded that it is possible to achieve this goal by decreasing the thickness of the plasma electrode, shortening the first gap, and adjusting the acceleration electrode voltage.  相似文献   
992.
We report on a first study of single walled carbon nanotubes (SWCNTs) after application of dynamic (shock) compression. The experiments were conducted at 19 GPa and 36 GPa in a recovery assembly. For comparison, an experiment at a static pressure of 36 GPa was performed on the material from the same batch in a diamond anvil cell (DAC). After the high pressure treatment the samples were characterized by Raman spectroscopy and transmission electron microscopy (TEM). After exposure to 19 GPa of shock compression the CNT material exhibited substantial structural damage such as CNT wall disruption, opening of the tube along its axis (“unzipping”) and tube shortening (“cutting”). Dynamic compression to 36 GPa resulted in essentially complete CNT destruction whereas at least a fraction of the nanotubes was recovered after 36 GPa of static compression though severely damaged. The results of these shock wave experiments underline the prospect of using SWCNTs as reinforcing units in material WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   
993.
We present calculations of the electronic transport properties of heavy-fermion systems within a semi-phenomenological approach to the dynamical mean field theory. In this approach the dynamics of the Hund's rules 4f (5f )-ionic multiplet split in a crystalline environment is taken into account. Within the scope of this calculation we use the linear response theory to reproduce qualitative features of the temperature-dependent resistivity and hall conductivity, the magneto-resistivity and the thermoelectric power typical for heavy-fermion systems. The model calculations are directly compared with experimental results on CeCu 2 Si 2. Received 30 June 2000 and Received in final form 15 December 2000  相似文献   
994.
The Mott metal-insulator transition in the two-band Hubbard model in infinite dimensions is studied by using the linearized dynamical mean-field theory recently developed by Bulla and Potthoff. The phase boundary of the metal-insulator transition is obtained analytically as a function of the on-site Coulomb interaction at the d-orbital, the charge-transfer energy between the d- and p-orbitals and the hopping integrals between p-d, d-d and p-p orbitals. The result is in good agreement with the numerical results obtained from the exact diagonalization method. Received 5 October 2000 and Received in final form 8 December 2000  相似文献   
995.
CuGeO3 exhibits a Spin-Peierls (SP) transition, at T SP = 14.3 K, which is announced above 19 K by an important regime of one-dimensional (1D) pretransitional lattice fluctuations which can be detected until about 40 K using X-ray diffuse scattering investigations. A quantitative analysis of this scattering shows that in this 1D direction the correlation length follows the “universal” behaviour expected for the thermal fluctuations of a real order parameter which characterizes the lattice dimerization. This allows to define a 1D mean-field temperature, T SP MF , of about 60 K and invalidates any mean field scenario for the SP transition of CuGeO3. As T SP MF is as high as 4 T SP we propose that the 3D-SP order is achieved by the interchain coupling between 1D solitons which form below about 16-20 K. CuGeO3 being in the non-adiabatic regime, it is also suggested that the observed pretransitional fluctuations of CuGeO3 originate from the X-ray scattering on a very broad damped critical response of lower frequency than the “critical” phonon modes. From the quantitative analysis of the 1D fluctuations we also estimate the microscopic parameters of the SP chain. These parameters allow to locate CuGeO3 close to the quantum critical boundary separating the gapped SP ground state to the ungapped anti-ferromagnetic ground state. The vicinity of a quantum critical point emphasizes the role of the quantum and non-adiabatic fluctuations and the importance of the interchain coupling in the physics of CuGeO3. Finally we compare these findings with those obtained for the organic SP systems (BCPTTF)2PF6, (TMTTF)2PF6 and MEM(TCNQ)2. From a similar analysis of the pretransitional lattice fluctuations it is found that (BCPTTF)2PF6 and (TMTTF)2PF6 are located on the SP gapped classical-quantum boundary and are in the adiabatic regime where the fluctuations lead to the formation of a pseudo-gap in the spin degrees of freedom. Differently, we place MEM(TCNQ)2 inside the SP quantum phase around the crossover line between the adiabatic and non-adiabatic regimes. Received 13 September 2000 and Received in final form 6 February 2001  相似文献   
996.
Within the single band 2D-Hubbard model treated by means of a strong-coupling approach based on a cumulant expansion and a nonstandard diagrammatic technique, we discuss the existence of critical charge fluctuations that could give rise to an instability towards a phase separation (PS). It turns out that such instability exists and evolves into an incommensurate charge density wave (ICDW) when long-range Coulomb forces are taken into account. We find a stripe phase with a crossover from diagonal to vertical stripes at increasing doping in the range 0.01 ?δ? 0.2 and increasing Coulomb potential U, similarly to recent NMR experiments on La 2 - x Sr x CuO 4. Received 20 November 2000  相似文献   
997.
The addition to the Hubbard Hamiltonian of a t' diagonal hopping term, which is considered to be material dependent for high-T c cuprate superconductors, is generally suggested to obtain a model capable to describe the physics of high-T c cuprate materials. In this line of thinking, the two-dimensional t-t'-U model has been studied by means of the Composite Operator Method, which allows to determine the dynamics in a fully self-consistent way by use of symmetry requirements, as the ones coming from the Pauli principle. At first, some local quantities have been calculated to be compared with quantum Monte Carlo data. Then, the structure of the energy bands, the shape of the Fermi surface and the position of the van Hove singularity have been computed as functions of the model parameters and studied by the light of the available experimental data. The results of our study show that there exists two sets of parameters that allows the model to describe the relevant features of the 1-layer compounds Nd2-xCexCuO4 and La2-xSrxCuO4. On the other hand, for the 2-layer compound YBa2Cu3O 7 - δ is not possible to find a reasonable set of parameters which could reproduce the position of the van Hove singularity as predicted by ARPES experiments. Hence, it results questionable the existence of an unique model that could properly describe the variety of cuprate superconductors, as the two-dimensional t-t'-U model was thought to be. Received 29 March 2000 and Received in final form 10 August 2000  相似文献   
998.
A neutron diffraction study, as a function of temperature, of the title compounds is presented. The whole family (space group Immm, a ≈ 3.8?, b ≈ 5.8?, c ≈ 11.3?) is structurally characterised by the presence of flattened NiO6 octahedra that form chains along the a-axis, giving rise to a strong Ni-O-Ni antiferromagnetic interaction. Whereas for Y-compound only strong 1D correlations exist above 1.5 K, presenting the Haldane gap characteristic of 1D AF chain with integer spin, 3D AF ordering is established simultaneously for both R and Ni sublattices at temperatures depending on the rare earth size and magnetic moment. The magnetic structures of R2BaNiO5 ( R = Nd, Tb, Dy, Ho, Er and Tm) have been determined and refined as a function of temperature. The whole family orders with a magnetic structure characterised by the temperature-independent propagation vector = (1/2, 0, 1/2). At 1.5 K the directions of the magnetic moments differ because of the different anisotropy of the rare earth ions. Except for Tm and Yb (which does not order above 1.5 K), the magnetic moment of the R3+ cations are close to the free-ion value. The magnetic moment of Ni2+ is around 1.4 , the strong reduction with respect to the free-ion value is probably due to a combination of low-dimensional quantum effects and covalency. The thermal evolution of the magnetic structures from T N down to 1.5 K is studied in detail. A smooth re-orientation, governed by the magnetic anisotropy of R3+, seems to occur below and very close to T N in some of these compounds: the Ni moment rotates from nearly parallel to the a-axis toward the c-axis following the R moments. We demonstrate that for setting up the 3D magnetic ordering the R-R exchange interactions cannot be neglected. Received 19 July 2001  相似文献   
999.
We describe the excitation spectrum of a two-component neutral Fermi gas with attractive interactions in the superfluid phase at finite temperature by deriving a suitable Random-Phase approximation in the collisionless regime with the technique of functional derivatives. The obtained spectrum for the homogeneous gas at small wavevectors contains the Bogoliubov-Anderson phonon and is essentially different from the spectrum predicted by the static Bogoliubov theory, which instead shows an unphysically large response. We adapt the results for the homogeneous system to obtain the dynamic structure factor of a harmonically confined superfluid and we identify in the spectrum a unique feature of the superfluid phase. Received 28 March 2001  相似文献   
1000.
We have performed kinematically complete investigations of molecular photodissociation of triatomic hydrogen in a fast beam translational spectrometer recently built in Freiburg. The apparatus allows us to investigate laser-induced dissociation of neutral molecules into two, three, or more neutral products. The fragments are detected in coincidence and their vectorial momenta in the center-of-mass frame are determined. We demonstrate the potential of the method at the fragmentation of the 3 s 2 A 1 ( N = 1, K = 0) state of triatomic hydrogen. In this state, three-body decay into ground state hydrogen atoms H+H+H, two-body predissociation into H+H 2 (v , J), and photoemission to the H 3 ground state surface with subsequent two-body decay are competing channels. In the case of two-body predissociation, we determine the rovibrational population in the H 2 (v , J) fragment. The vibrational distribution of H 2 is compared with approximate theoretical predictions. For three-body decay, we measure the six-fold differential photodissociation cross-section. To determine accurate final state distributions, the geometric collection efficiency of the apparatus is calculated by a Monte Carlo simulation, and the raw data are corrected for apparatus efficiency. The final state momentum distribution shows pronounced correlation patterns which are characteristic for the dissociation mechanism. For a three-body decay process with a discrete kinetic energy release we have developed a novel data reduction procedure based on the detection of two fragments. The final state distribution determined by this independent method agrees extremely well with that observed in the triple-coincidence data. In addition, this method allows us to fully explore the phase space of the final state and to determine the branching ratios between the two- and three-body decay processes. Received 29 March 2001  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号